Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
N. Sampath, ${ }^{\text {a }}$ S. Aravindhan, ${ }^{\text {a }}$
M. N. Ponnuswamy ${ }^{\text {a }}$ and M. Nethaji ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

Correspondence e-mail:
mnpsy2004@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.076$
$w R$ factor $=0.175$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,2-Bis(2-chlorophenyl)-1,2-bis(3,4-dimethyl-phenyl)ethane-1,2-diol

The asymmetric unit of the title compound, $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{2}$, contains a half molecule with the other half generated by the crystallographic twofold symmetry. The hydroxyl groups are in the trans configuration. The molecular structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions stabilize the crystal packing.

Comment

The X-ray crystal structure analysis of the title compound, (I), was carried out to study its molecular conformation and hydrogen-bonding characteristics.

(I)

The asymmetric unit contains one half-molecule of (I) with the other half being generated by the twofold rotation symmetry operation $\left(1-x, y, \frac{1}{2}-z\right)$ (Fig. 1). The $\mathrm{C} 1-\mathrm{Cl}^{\mathrm{i}}$

Figure 1
ZORTEP (Zsolnai, 1998) plot of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The suffix 'a' corresponds to symmetry code i in Table 1.

Received 11 February 2005 Accepted 28 February 2005 Online 11 March 2005

Figure 2
Packing of (I), viewed down the a axis. Dashed lines represent intramolecular hydrogen bonds.
bond distance [1.585 (6) \AA; symmetry code as in Table 1] of the ethane group is comparable with the mean value of 1.588 Å reported by Allen et al. (1987) and those observed in related structures (Mak et al., 1998; Pozharskii et al., 2000; Bond et al., 1989). The C-Cl bond length of 1.756 (3) \AA agrees with the mean value of $1.734 \AA$ (Allen et al., 1987). The $\mathrm{O} 1-\mathrm{C} 1-\mathrm{Cl}^{1}-\mathrm{O}^{\mathrm{i}}$ torsion angle $\left[173.0(2)^{\circ}\right]$ indicates that the hydroxyl groups are in the trans configuration. The C2-C7 and C8-C13 benzene rings are oriented approximately perpendicular to each other [dihedral angle $=87.3(1)^{\circ}$].
The molecular structure of (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2). The molecular packing in the crystal is stabilized by a weak C $\mathrm{H} \cdots \pi$ interaction, $\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 1$, where $C g 1$ is the C8C13 ring centroid (Desiraju, 1989).

Experimental

Compound (I) was prepared following the procedure adopted by Matsukawa \& Hinakubo (2003). To a mixture of Sm powder (450 mg , $3 \mathrm{mmol})$ and $\mathrm{SmCl}_{3}(364 \mathrm{mg}, 1 \mathrm{mmol})$ in water was added 3,4-dimethoxyphenylbenzoyl chloride ($244.7 \mathrm{mg}, 1 \mathrm{mmol}$). After 36 h , the resultant yellow-green suspension was treated with $2 M \mathrm{HCl}(10 \mathrm{ml})$ and extracted with ether. The organic layer was washed with NaHCO_{3} (twice) and brine, then dried and concentrated in vacuo. The crude product was subjected to flash column chromatography and the coupling product obtained was then recrystallized from methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{2} \\
& M_{r}=491.42 \\
& \text { Monoclinic, } C 2 / c \\
& a=7.667(2) \AA \\
& b=22.862(6) \AA \\
& c=14.654(4) \AA \\
& \beta=104.478(4)^{\circ} \\
& V=2487.0(11) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: none
9108 measured reflections
2531 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.175$
$S=1.17$
2531 reflections
157 parameters
H -atom parameters constrained
1904 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-28 \rightarrow 28$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0773 P)^{2}\right. \\
& \quad+2.2226 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 7$	$1.756(3)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.585(6)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.435(4)$	$\mathrm{C} 11-\mathrm{C} 15$	$1.532(5)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.535(4)$	$\mathrm{C} 12-\mathrm{C} 14$	$1.468(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.554(4)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$102.8(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$114.91(19)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$109.4(2)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$52.6(4)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 13$	$26.2(4)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$167.8(3)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 13$	$-86.5(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-128.7(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$-157.1(3)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-13.4(4)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$90.2(3)$

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{Cl} 1$	0.82	2.35	$3.010(2)$	138
C13-H13 -O 1	0.93	2.48	$2.817(4)$	102
C3-H3 $\cdots \mathrm{O}^{1}$	0.93	2.34	$2.943(4)$	122
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	0.96	2.90	$3.751(5)$	148

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y, 1+z$. Note: $C g 1$ is the $\mathrm{C} 8-\mathrm{C} 13$ ring centroid

All H atoms were positioned geometrically ($\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

NS thanks the Council of Scientific and Industrial Research (CSIR), India, for financial support. The authors also thank the Department of Science and Technology, India, for data collection on the CCD Facility set up at IISc, Bangalore, India, under the IRHPA-DST program.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bond, D. R., Bourne, S. A., Nassimbeni, L. R. \& Toda, F. (1989). J. Crystallogr. Spectrosc. Res. 19, 809-814.

organic papers

Desiraju, G. R. (1989). Materials Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85-113. New York: Elsvier Science Publishers.
Mak, T. C. W., Patrick, B. O., Rettig, S. J., Scheffer, J. R., Trotter, J., Ukpabi, P., Wu, B.-M. \& Yee, V. C. (1998). Acta Cryst. C54, 11481151.

Matsukawa, S. \& Hinakubo, Y. (2003). Org. Lett. 5, 1221-1223.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Pozharskii, A. F., Vistorobskii, N. V. \& Starikova, Z. A. (2000). Izv. Akad. Nauk SSSR Ser. Khim. (Russ. Chem. Bull.), pp. 1103-1107.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany

